CITY OF LINCOLN CITY COUNCIL

AND

LINCOLN REDEVELOPMENT SUCCESSOR AGENCY SPECIAL MEETING AMENDED AGENDA

November 12, 2015

OPEN SESSION MEETING

4:00PM - 5:00 PM*
Lincoln City Hall
First Floor Meeting Room
600 Sixth Street
Lincoln, CA 95648

- 1. CALL TO ORDER
- 2. ROLL CALL
- 3. PLEDGE OF ALLEGIANCE
- 4. CITIZENS ADDRESSING THE COUNCIL
- 5. GENERAL BUSINESS
- 6. INFORMATION ITEMS
- A. Sustainable Groundwater Management Act (SGMA). (Staff -oral report*)
- B. Water Master Plan Workshop #7. (Tully/Wheeler/PFM oral report)
- 7. ADJOURNMENT

I HEREBY CERTIFY THE ATTACHED NOTICE WAS POSTED 24 HOURS PRIOR TO THE SCHEDULED MEETING.

Dated: 11/10/2015

GWEN SCANLON, CITY CLERK

^{*}End time is an estimate

The City of Lincoln Water Workshop No. 7

Gwyn-Mohr Tully, J.D.

November 12, 2015

Council Direction

- Identify water supply and demand scenarios
- Define infrastructure for alternatives at buildout
- Assess buildout costs for identified alternatives
- Determine feasibility of each identified alternative

Overview of Workshop No. 7

- Present the buildout demand breakdown
- Propose 3 supply scenarios for discussion
- Identify costs associated with supply scenarios

Buildout Demand Graphic

City Buildout Water Demand Breakdown

- Buildout Condition*
- Max Day Demand = 67 MGD
- NID Area 25 MGD
- PCWA Area 42 MGD
- Buildout Max Day potable demand = 49 MGD
- NID Area 14 MGD
- PCWA Area 35 MGD
- Buildout Max Day non-potable = 18 MGD
- NID Area 11 MGD
- PCWA Area 7 MGD

*Demand excludes current raw water deliveries in City and SOI

PCWA Demand Graphic

NID Demand Graphic

Scenarios for Consideration

Demand Scenario 1: Status Quo

67 MGD potable water to meet all demands

Demand Scenario 2: Maximize Recycled and Raw Water - (90% of possible non-potable)

≯ 49 MGD potable, 18 MGD non-potable

Demand Scenario 3: Combination - (50% of possible non-potable)

> 57 MGD potable, 10 MGD non-potable

Demand Scenario 1

- Demand Distribution
- PCWA 42 MGD
- NID 25 MGD

 No distinction between potable and nonpotable demands (all the same)

Supply for Demand Scenario 1

- Sources of Supply
- PCWA treated surface water (35 MGD)*
- NID treated surface water (25 MGD)
- Treated groundwater (7 MGD)

*Groundwater offsets PCWA area demands only

Demand Scenario 2

(90% of possible non-potable)

- Demand Distribution
- PCWA 42 MGD
- Potable 35 MGD
- Non-Potable 7 MGD
- NID 25 MGD
- Potable 14 MGD
- Non-Potable 11 MGD

Supply for Demand Scenario 2

- Sources of Potable Supply (49 MGD)
- Treated Groundwater (6 MGD)
- NIT 1
- PCWA treated surface water (29 MGD)
- NID treated surface water (14 MGD)
- ALT 2 (maximize NID plant)
- PCWA treated surface water (18 MGD)
- NID treated surface water (14 MGD + 11 MGD wheeled = 25 MGD)
- Sources of Non-Potable Supply (18 MGD)
- Reclaimed Water
- Raw Water
- Non-potable Groundwater

Demand Scenario 3

(50% of possible non-potable)

- Demand Distribution
- PCWA 42 MGD
- Potable 39 MGD
- Non-Potable 3 MGD
- NID 25 MGD
- Potable 18 MGD
- Non-Potable 7 MGD

Supply for Demand Scenario 3

- Sources of Potable Supply (57 MGD)
- Treated Groundwater (6 MGD)
- PCWA treated surface water (33 MGD)
- NID treated surface water (18 MGD)
- ALT 2 (maximize NID plant)
- PCWA treated surface water (26 MGD)
- NID treated surface water (18 MGD + 7 MGD wheeled = 25 MGD)
- Sources of Non-Potable Supply (10 MGD)
- Reclaimed Water
- Raw Water
- Non-potable Groundwater

Summary Supply Table

		Scenario 2	irio 2	Scena	Scenario 3
sauddns	Scenario 1	Alt 1	Alt 2	Alt 1	Alt 2
PCWA Treated	35	29	18	33	26
NID Treated	25	14	25	18	25
Potable Groundwater	7	9	9	6	9
Non-Potable	0	18	18	10	10
Total	29	29	29	29	67

Summary Cost Table

		Scenario 2	irio 2	Scenario 3	irio 3
saliddns	Scenario 1	Alt 1	Alt 2	Alt 1	Alt 2
PCWA Treated	200 - 250	150 - 200	12 - 15	180 - 230	75 - 95
NID Treated	166	92	166	130	166
Potable Groundwater	30	26	26	26	26
Non-Potable	0	*50 - 70	*50 - 70	25 - 40	25 - 40
Total	396 - 446	318 - 388	254 - 277	361 - 426	292 - 328

^{*}Costs increase with the percentage of non-potable is reached, actual costs may be higher to serve all 90%

Roadmap for City Decision-Making

 Workshop 8 (Dec): Reach City Council Consensus on Preferred Water Supply Alternative(s) and Financial Issues

Questions?

Water Supply Scenarios Financing Alternatives City of Lincoln

November 12, 2015

Public Financial Management, Inc.

601 S. Figueroa Street, Suite 4500 Los Angeles, CA 90017 (213) 489-4075 www.pfm.com

Capital Costs are Financed at Time of Construction

- All supply cost alternatives have substantial capital cost
- Cashflow needs will dictate debt financing and timing
- Construction costs may precede connection fee revenues
- Debt can be used to better match revenues and expenditures
- Interest costs will add to the cost of capital
- All costs (including debt service) are anticipated to be paid by new customers - growth pays its way
- Connection fees
- Developer contributions
- Community Facility District

Different Financing Vehicles are Available

Developer Contributions

- Developers would contribute capital payments in exchange for credits over time
- Traditional method of finance may not be available at this time due to constraints on capital and inability to carry costs

Joint Powers Authority

- Regional project to be funded by more than one agency
- Water supply contracts serve as security paid by connection
- Fund reserve and covenant to increase rates if reserves and connection fees are insufficient to pay debt service

City of Lincoln Financing

- Connection fees would pay debt service
- Water utility could pledge revenues as backstop
- Impact on City Utility debt capacity and ability to fund projects

Debt Financing Example

Assumptions:

- Construction cost in 2015 dollars = \$200 million
- Construction in 2023
- Escalation factor = 2%
- Construction cost in 2023 = \$234 million
- True Interest Cost = 5.6%
- Thirty year level debt structure
- Annual debt service = \$16.5 million
- connection fees, and no use of existing funds) 950 connections per year required to pay principal and interest (assuming today's

The PFM Group

Debt Financing Example (Using Available Funds)

- Assumes \$20 million in fund
- \$235.5 million of bonds Debt Issuance in 2023 Average of 560 New Connections per .
- Connection fee of \$14,907, Increasing at 2% per year

Next Steps

- Identify preferred alternative
- Develop funding and financing timeline
- Evaluate alternative financing vehicles and impacts on Lincoln
- Select optimal financing structure
- Work with City Council to identify partners as appropriate
- Develop revenue structure, including connection fees

The PFM Group